Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1124697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37206470

RESUMEN

Introduction: Obesity is a risk factor for the development of uterine leiomyoma (UL), and the inflammatory response plays a key role in the pathogenesis of UL. Our objective was to assess whether there was an independent relationship between inflammatory markers and triglycerides (TG) in patients with UL. Methods: 1,477 UL participants who were hospitalized at the Jining Medical University between January 2016 and December 2022 were included in this cross-sectional study. The independent and dependent variables measured at baseline were inflammatory markers and TG levels, respectively. The covariates were age, body mass index (BMI), UL and menstrual status. Based on the number of fibroids, the study population was divided into Single-group and Multiple-group. Results: Univariate and multiple regression analyses and stratified analyses revealed significant positive correlations between neutrophil-lymphocyte ratio and systemic immune inflammation index and TG, and significant negative correlations between monocyte-lymphocyte ratio and TG. Conclusion: The findings show a significant correlation between the inflammatory response and lipid metabolism levels in UL patients. This provides direction for further research into the pathophysiology of UL and also helps to formulate hypotheses for predictive models of UL.

2.
J Oncol ; 2022: 3257887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990995

RESUMEN

The inflammatory reaction has been proven to be a key factor in the pathogenesis of uterine leiomyoma. The platelet-lymphocyte ratio (PLR) and the neutrophil-lymphocyte ratio (NLR) are inexpensive and reliable inflammatory biomarkers. However, evidence of the relationship between PLR and NLR in patients with uterine leiomyoma is limited. This study aimed to explore the relationship between PLR and NLR in patients with incident uterine leiomyoma. This cross-sectional study included 763 patients with uterine leiomyoma who were first diagnosed in our hospital between January 2016 and December 2016. Patient characteristics were collected for univariate analysis, smooth curve fitting, and multivariate piecewise linear regression. Overall, 722 patients with an average age of 40.16 ± 5.99 years were included. The average PLR was 161.22 ± 65.33. Univariate analysis revealed a significant positive correlation between PLR and NLR (P < 0.0001). In addition, the non-linear relationship between the PLR and NLR was tested using smooth curve fitting after adjusting for potential confounding factors. The multivariate piecewise linear regression model showed that there was a significant positive correlation between PLR and NLR in both PLR <226.45 (ß 0.01, 95% CI: 0.01, 0.01;P < 0.0001) and >226.45 (ß 0.00, 95% CI: 0.00, 0.00; P=0.0026). In conclusion, PLR and NLR are positively correlated in patients with uterine leiomyoma. This result clarifies the promoting role of inflammation in the occurrence of uterine leiomyoma.

3.
Huan Jing Ke Xue ; 41(5): 2310-2319, 2020 May 08.
Artículo en Chino | MEDLINE | ID: mdl-32608849

RESUMEN

Sulfate-radical-based advanced oxidation technologies by activation of peroxymonosulfate (PMS) have been widely applied for decontamination of wastewater, although our knowledge on the direct oxidation of organic contaminants by PMS is still limited. In this study, the direct interaction between PMS and sulfasalazine (SSZ), a widely used antibiotic, was investigated systematically, including the reaction kinetics and transformation pathways. The results revealed that SSZ degradation obeyed a pseudo-first-order kinetic model and increasing initial PMS concentration or ionic strength could accelerate the degradation rates; alkaline conditions were beneficial to SSZ removal by PMS; and the presence of Cl- markedly promoted SSZ decay. The degradation of SSZ by PMS was inhibited in surface water. By using liquid chromatography-mass spectrometry as well as reaction site identification, two different oxidation pathways were proposed, including hydroxylation and SO2 extrusion. The findings obtained in this study could help to evaluate the feasibility of decontamination of sulfonamide antibiotics by non-activated PMS.

4.
Sci Total Environ ; 708: 134669, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796270

RESUMEN

Eco-friendly treatment of refractory pollutants in wastewater is still full of challenge in catalytic oxidation and adsorption. In this study, based on the concept of green chemistry, sulfur-doped titanium dioxide hollow spheres modified by surfactant loaded on magnetic bentonite (CST/γ-Fe2O3-BT) is synthesized in two steps, and bisphenol A (BPA) was chosen as the representative organic pollutant. These materials were characterized by means of XRD, FTIR, SEM, EDS, TEM, XPS, BET, and VSM techniques. The adsorption and photodegradation behavior of CST/γ-Fe2O3-BT were examined. The Langmuir isotherm exhibited a better fit with a maximum adsorption capacity of 77.36 mg/g. At pH 7, the reaction rate constant (k) of the BPA photocatalytic degradation by product was 0.00104 min-1, and the adsorption equilibrium constant (K) was 0.04034L/mg. In addition, the composite can be recovered from the reaction mixture by applying an external magnetic field due to the existence of the superparamagnetic iron oxide nanoparticles in the construct. The recovered particles retained their catalytic activity which the catalytic activity of the material still reached 91% of the first catalytic experiment after 5 repetitive experiments. Results infer that the material has excellent reusability. Thus, CST/γ-Fe2O3-BT is a significant candidate for the treatment of recalcitrant organic pollutants in wastewater.

5.
Sci Total Environ ; 682: 505-513, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31129538

RESUMEN

Magnetic nano-composite materials have been attracting considerable attention due to their unique properties and versatile applications. In this study, a novel magnetic amino-functionalized conjugate adsorbent, named as bentonite/CoFe2O4@MnO2-NH2 (BCFMNs), was synthesized by combining APTES and MnO2 with magnetic bentonite. XRD, FT-IR, SEM, EDS, TEM, and VSM techniques were used to characterize its structure and magnetic properties. Results were in indicative of productive synthesis, well-defined architecture and satisfactory magnetism. BET examinations illustrated 84.97m2/g of specific surface area, 0.15cm3/g of pore volume and 7.02nm average pore size. The effect parameters such as adsorbent dosage, contact time, initial concentration and ion selectivity and recycling were evaluated and optimized systematically. Also, the metal concentrations were measured by ICP-MS spectrometer. The feasibility of the BCFMNs for removal of Cd2+ from aqueous solution was also evaluated by adsorption experiments with the maximal adsorption efficiency for Cd2+ up to 98.88%. Cd2+ adsorption could be interpreted by the Langmuir adsorption isotherm and the maximum adsorption capacity was 115.79mg/g. The results revealed that the adsorbent still had higher selectivity of Cd2+ removal even in the presence of high concentration coexisting cations. The as-prepared magnetic conjugate adsorbent could be recycled by taking advantage of its magnetic properties. The distinctive structure of BCFMNs and its excellent adsorption performance of cadmium reflects its prospective application in water treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...